复数的虚部带i吗
复数的虚部没有i,i为“虚数单位”,对于复数z=a+bi,a、b为任意实数,i 为“虚数单位”,a、b分别叫做复数a+bi的实部和虚部。实数和虚数都是复数的子集。 扩展资料
对于复数z=x+iy,其中x,y是任意实数,y称为复数z的虚部 。y=Im z。在笛卡尔直角坐标系中,y轴的值为虚部。利用实部和虚部可以判断两个复数是否相等,定义共轭复数,计算复数的模和辐角主值。
复数实部和虚部是什么怎么表示
实部与虚部是数学名词“复数”中的一个概念,把形如z=a+bi(a,b均为实版数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
扩展资料
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的’和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
利用傅立叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示。
复数的虚部是什么?
对于复数z=x+iy,其中x,y是任意实数,y称为复数z的虚部。
y=Im z。在笛卡尔直角坐标系中,y轴的值为虚部。利用实部和虚部可以判断两个复数是否相等,定义共轭复数,计算复数的模和辐角主值。
纯虚数:实数部分为零的复数被认为是纯虚数,即x=0。
实数:虚数部分为零的复数是实数,即y=0。
来源:
虚数单位“i”首先为瑞士数学家欧拉所创用,到德国数学家高斯提倡才普遍使用。高斯第一个引进术语“复数”并记作a+bi。“虚数”一词首先由笛卡儿提出。早在1800年就有人用(a,b)点来表示a+bi,他们可能是柯蒂斯、棣莫佛、欧拉以及范德蒙。
以上内容参考:百度百科-复数